

Call for Papers

Now extended until 15/02/2026!

Current Trends and Future Pathways of Technology in Vocational Education and Training

Technology is constantly changing everyday working life. This has already been shown by a number of studies and articles (see e.g., Dengler & Matthes, 2018, 2021; Fregin et al., 2023; Pargmann et al., 2023; Seufert et al., 2021). This process of change is accelerated by the breakthrough of artificial intelligence. New services and models are constantly being made available to help employees manage increasingly complex tasks. Current examples of this change in the context of business education are the areas of bank lending, consulting and personnel selection processes. Banks and financial institutions are increasingly using AI-supported algorithms to evaluate the creditworthiness of customers (Ebner & Sageder, 2023). Substantial amounts of data are analyzed to create risk models and simplify decisions. In personnel selection processes, AI-supported application management systems have become established to filter and analyze applications more efficiently (Kanning, 2023). These systems automatically evaluate CVs for their fit with recruitment criteria and identify the most qualified applicants. These developments not only affect employees who need to continuously improve their qualifications, but also apprentices and trainees at the start of their careers as well as their teachers and training staff in companies. As a result, all educational institutions are striving to keep up with the changes and consider this “new” reality in existing educational environments or new training courses and adapt institutional conditions.

Science can provide guidance in this challenge, as one of its central tasks is to provide reliable findings that provide a basis for decisions, legitimize activities, and detect starting points for improvements (Döring & Bortz, 2016, p. 4). In fact, international research has already presented several meta-analyses of technologies (Bernard et al., 2009; Bernard et al., 2014; Hattie, 2023; Höffler & Leutner, 2007; Takacs et al., 2015; van der Kleij et al., 2015), although these do not consider the special features of vocational education and training. To facilitate orientation, the current state of research in vocational education needs to be processed systematically.

A systematization and aggregation of the state of knowledge, especially in vocational education research is not only beneficial for practice, but also for research itself. For example, Park et al. (2023) report in an article in the journal *Nature* that the frequency of “groundbreaking” discoveries has decreased exponentially over the last 60 years. The study explicitly excludes changes in citation behavior or the quality of scientific studies and concludes that new outstanding developments require comprehensive knowledge of the existing state of research, but that this can hardly be mastered individually, due to the mass of available knowledge. This also shows the need for summarizing work.

Against this background, we are looking for contributions that elaborate, systematize, summarize, and aggregate the current state of knowledge in vocational education and training in the field of technology. The aim is to draw up an interim balance sheet that provides an opportunity for orientation in the design of vocational teaching and learning processes as well as the institutional conditions and that develops perspectives for further research. Contributions that review the state of research in neighboring disciplines and derive implications for vocational education and training are also welcome. For example, we are looking for contributions on:

- Paradigms, phases, and lines of development of research on technology in teaching and learning processes: Which questions were investigated? What were the main objectives? Which questions are considered to have been answered?
- Summarize the methodological possibilities for researching technology and its effects: What research instruments and procedures are used in research? How has the type of measurement instruments changed over time? What are the strengths and weaknesses of the different approaches? Which approaches dominate? Which are represented less strongly?
- Summary of approaches to modeling competencies around technology: Which models have been developed over time? How are they used in studies or in practice? What are the similarities and differences? What gaps still need to be addressed? For which groups of people or target groups are models available? What basic assumptions are associated with them?
- Summaries of the effect of technology on teaching and learning processes and learning outcomes: Which learning outcomes have been investigated to date? What effects can be demonstrated? What are the strengths and weaknesses of studies? Where are there still gaps in research?
- Summaries of institutional approaches to shaping the use of technology: What concepts are available to manage institutions? How can technology be anchored institutionally for teaching and learning? What role does the design of the institution play in successful technologized teaching and learning processes?

- Summaries of curricular approaches: How has technology been integrated into the curriculum? To what extent is technology considered as content or as a method/medium? Which approaches and goals were guiding?

The prerequisite for consideration of contributions is that they conduct systematic research, information procurement and evaluation and establish direct links to vocational education research. Systematic literature reviews (e.g. using the PRISMA method according to Page et al., 2021, see also Zawacki-Richter et al., 2019) are as welcome as meta-analyses and evidence gap maps (Polanin et al., 2023). Vocational education and training research and the term *technology* should be understood broadly.

For better organization of the process, we ask you to submit a short abstract (max. 500 words) to sustvet-research.ew@uni-hamburg.de. The submission process has the following timeline:

28.11.2025	Deadline for abstract submission
20.12.2025	Manuscript invitations/Rejections sent out
01.05.2026	Deadline for manuscript submissions
31.07.2026	Communication of double-blind peer review results
11/2026	Publication of the special issue

Updated timeline for extended submission deadline:

15.02.2026	Deadline for abstract submission
27.02.2026	Manuscript invitations/Rejections sent out
01.06.2026	Deadline for manuscript submissions for authors using the extension

Do you have a contribution that deals with technology and/or sustainability in vocational education and training, but it does not fit the Call for Papers? Individual contributions can be submitted at any time [via the journal's homepage](#).

The editors

Florian Berding, Julia Pargmann, Elisabeth Riebenbauer

About SUST-VET

SUST-VET publishes theoretical and empirical papers that focus on sustainability and/or technology in the context of vocational education and training (VET) research. In addition, we continuously publish relevant systematic literature reviews and meta-analyses. What we offer:

- Double-blind peer review for all article types
- Diamond Open Access (no costs incur neither for authors nor for readers)
- DOI for every paper, journal itself has an ISSN
- Indexing planned in i.e., EconStor, SSOAR, VOCED Plus, ERIHPlus, BASE, DIPF, VET Repository

References

Bernard, R. M., Abrami, P. C., Borokhovski, E., Wade, C. A., Tamim, R. M., Surkes, M. A. & Bethel, E. C. (2009). A meta-analysis of three types of interaction treatments in distance education. *Review of Educational Research*, 79(3), 1243–1289. <https://doi.org/10.3102/0034654309333844>

Bernard, R. M., Borokhovski, E., Schmid, R. F., Tamim, R. M. & Abrami, P. C. (2014). A meta-analysis of blended learning and technology use in higher education: from the general to the applied. *Journal of Computing in Higher Education*, 26(1), 87–122. <https://doi.org/10.1007/s12528-013-9077-3>

Dengler, K. & Matthes, B. (2018). *Substituierbarkeitspotenziale von Berufen: Wenige Berufsbilder halten mit der Digitalisierung Schritt*. IAB-Kurzbericht. <http://hdl.handle.net/10419/185839>

Dengler, K. & Matthes, B. (2021). *Auch komplexere Tätigkeiten könnten zunehmend automatisiert werden*. <https://doku.iab.de/kurzber/2021/kb2021-13.pdf>

Döring, N. & Bortz, J. (2016). *Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften* (5. Auflage). Springer. <https://doi.org/10.1007/978-3-642-41089-5>

Ebner, A. & Sageder, M. (2023). Künstliche Intelligenz im Kreditrisikomanagement - Akzeptanz und Herausforderungen bei der Einführung in österreichischen Banken. In T. A. Herberger (Hrsg.), *Digitale Transformation und Nachhaltigkeit in der Finanzwelt* (S. 27–48). Nomos Verlagsgesellschaft mbH & Co. KG. <https://doi.org/10.5771/9783748939245-27>

Fregin, M.-C., Koch, T., Malfertheiner, V., Özgül, P. & Stops, M. (2023). *Automatisierungspotenziale von beruflichen Tätigkeiten: Künstliche Intelligenz und Software – Beschäftigte sind unterschiedlich betroffen*. <https://doi.org/10.48720/IAB.KB.2321>

Hattie, J. (2023). *Visible learning: The sequel ; a synthesis of over 2,100 meta-analyses relating to achievement* (First edition). Routledge Taylor & Francis Group.

Höffler, T. N. & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. *Learning and Instruction, 17*(6), 722–738. <https://doi.org/10.1016/j.learninstruc.2007.09.013>

Kanning, U. P. (2023). Künstliche Intelligenz in der Personalauswahl. In U. P. Kanning & M. L. Ohlms (Hrsg.), *Digitale Personalauswahl und Eignungsdiagnostik* (S. 197–226). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-68211-1_9

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., . . . Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ (Clinical research ed.), 372*, n71. <https://doi.org/10.1136/bmj.n71>

Pargmann, J., Riebenbauer, E., Flick-Holtsch, D. & Berding, F. (2023). Digitalisation in accounting: a systematic literature review of activities and implications for competences. *Empirical Research in Vocational Education and Training, 15*(1), 1. <https://doi.org/10.1186/s40461-023-00141-1>

Park, M., Leahey, E. & Funk, R. J. (2023). Papers and patents are becoming less disruptive over time. *Nature, 613*(7942), 138–144. <https://doi.org/10.1038/s41586-022-05543-x>

Polanin, J. R., Zhang, Q., Taylor, J. A., Williams, R. T., Joshi, M. & Burr, L. (2023). Evidence Gap Maps in Education Research. *Journal of Research on Educational Effectiveness, 16*(3), 532–552. <https://doi.org/10.1080/19345747.2022.2139312>

Seufert, S., Guggemos, J. & Ifenthaler, D. (2021). Zukunft der Arbeit mit intelligenten Maschinen: Implikationen der Künstlichen Intelligenz für die Berufsbildung. In S. Seufert, J. Guggemos, D. Ifenthaler, H. Ertl & J. Seifried (Hrsg.), *Zeitschrift für Berufs- und Wirtschaftspädagogik Beiheft: Bd. 31. Künstliche Intelligenz in der beruflichen Bildung: Zukunft der Arbeit und Bildung mit intelligenten Maschinen?!* (S. 9–27). Franz Steiner Verlag.

Takacs, Z. K., Swart, E. K. & Bus, A. G. (2015). Benefits and pitfalls of multimedia and interactive features in technology-enhanced storybooks: A meta-analysis. *Review of Educational Research, 85*(4), 698–739. <https://doi.org/10.3102/0034654314566989>

van der Kleij, F. M., Feskens, R. C. W. & Eggen, T. J. H. M. (2015). Effects of feedback in a computer-based learning environment on students' learning outcomes. *Review of Educational Research, 85*(4), 475–511. <https://doi.org/10.3102/0034654314564881>

Zawacki-Richter, O., Kerres, M., Bedenlier, S. M., Bond, M. & Buntins, K. (Hrsg.). (2019). *Open. Systematic reviews in educational research: Methodology, perspectives and application.* Springer VS. <https://doi.org/10.1007/978-3-658-27602-7>

